Industrial Engineering

Class notes, readings and more

Showing posts with label TOPICS RELATED TO INDUSTRIAL ENGINEERING. Show all posts
Showing posts with label TOPICS RELATED TO INDUSTRIAL ENGINEERING. Show all posts

Definition of safety and industrial hygiene

Definition of safety and industrial hygiene
Safety at work
According to Bestratén (1999), safety at work is "the set of techniques and procedures that are designed to eliminate or reduce the risk of accidents."
Therefore, safety at work is concerned with addressing a number of hazards that affect industrial accidents, such as:
  • Electrical hazards;
  •  Lack of mechanisms of protection against moving parts of machinery, equipment and tools;
  •  Falls of heavy objects;
 
  • Poor conditions of order and cleanliness in the workplace;
 
  • Fire Hazards
To achieve safety at work, we should develop preventive actions that fall within both general and specific rules, such as:
  • The mission and vision of the company;
  • The safety policies;
  • Procedures at work;
  • Staff training;
  • Incorporation of safety devices on machines, equipment and facilities.
Industrial hygiene
According to Hernandez and Marti (1989), industrial hygiene is the discipline that aims the prevention of occupational diseases by controlling chemical, physical or biological agents in the working environment.
The (chemical, physical or biological) agents mentioned have effect in the workplace; not only directly for workers who perform a particular task, but also for people from other areas that are part of that environment. Moreover, the presence of these agents also affects the external environment of the company like nearby businesses, nearby communities and in general the soil, air and water.
In order to reduce occupational risks of emerging pollutants, three objectives are established:
  1. Controls on the origin and source of danger;
  2. Controls on the path between the hazard and the worker;
  3. Controls on the subject exposed to danger.

Activities of industrial engineering

Activities of industrial engineering

Most important activities of industrial engineering are:

  • Development of time standards, costing and performance standards.
  • Selection of processes and assembling methods.
  • Selection and design of tools and equipment.
  • Design of facilities including plant location, layout of building, machines and equipment, material handling system raw materials and finished goods storage facilities.
  • Design and improvement of planning and control systems for production, inventory, quality and plant maintenance and distribution systems.
  • Cost control systems.
  • Development and installation of job evaluation systems.
  • Installation of wage incentive schemes.
  • Design and installation of value engineering and analysis system.
  • Operation research.
  • Mathematical and statistical analysis.
  • Performance evaluation.
  • Organization and methods.
  • Supplier selection and evaluation.

About Industrial engineering

About Industrial engineering

Nowadays economic scenario is marked by increasing competition in almost every sector of economy. The expectations of customers are on rise and manufacturers have to design and products in order to satisfy them. Thus, there is a challenge before the industries to manufacture goods of right quantity and quality and at the right time and at minimum cost for their survival and growth. This demands an increase in productive efficiency of organizations. Industrial engineering plays a vital role in increasing the productivity. Industrial engineering techniques are used to analyze and improve the work methods in order to eliminate waste and proper allocation and utilization of resources.

How can industrial engineering be defined?

Industrial engineering can be defined as a profession in which a knowledge of mathematical and natural sciences gained by study, experience and practice is applied with judgment to develop the ways to utilize economically the materials and other natural resources and forces of nature for the benefit of mankind.

The American Institute of Industrial Engineers define industrial engineering as:

Industrial engineering is concerned with the design, improvement and installation of integrated systems of men, material and equipment. It draws upon specialized knowledge and skills in the mathematical, physical sciences together with the principles and methods of engineering analysis and design to specify, predict and evaluate the results to be obtained from such systems.

The prime objective of industrial engineering is to increase the productivity by eliminating waste and non-value adding (unproductive) operations and improving the effective utilization of resources.

Productivity, types of productivity, productivity index, total productivity

Productivity, types of productivity, productivity index, total productivity

Whats is productivity?

Productivity is the ratio of output to some or all of the resources used to produce the output.

Types of productivity

We can mention the following types of partial productivities:

  • Labor productivity: units produced / hours worked
  • Capital productivity: output / capital input
  • Material productivity: output /material input

What is the productivity index?

We can calculate a type of partial productivity as labor productivity as output per man hours for a complete year. These figures obtained from year to year can be indexed and can be related to a base year so that output per man our comparisons can be made.

Definition of total productivity

It is the ratio of tangible output and tangible input.

Differences among partial productivity, total factor productivity and total productivity

Men, materials, machines, methods, money, energy, etc. are inputs.

  • Partial productivity: output / one class of input
  • Total factor productivity: net output / (labor + capital)
  • Total productivity : sum of all tangible outputs / sum of all tangible inputs

Industrial engineering functions

Industrial engineering functions

Industrial engineering plays an important role in any organization. Organizations are usually set up with selected industrial engineering functions best suited to their requirements. For example a company manufacturing standardized products may not have operation research functions whereas a manufacturer of precision instruments may heavily rely on quality control functions.

Traditionally, industrial engineering involves different functions, which support manufacturing and service operations in order to improve productivity, safety and workers welfare. These functions, as in the past, are otherwise neglected by many entrepreneurs who are only motivated by profit. Developed countries have long ago realized the physiological needs of their citizens as their life style has improved with the abundance of material resources. Further, with an increase in educated workers, the demand for improved working conditions and better treatment from the owners of enterprises increased. The owners adopted many of the industrial engineering functions to satisfy the employees demand while still maintaining profitability.

Industrial engineering functions can be grouped in different ways to suit an organization’s need. The major groupings, which provide a profile of its involvement, are:

  • Methods engineering
  • Work measurement
  • Planning of facilities and handling of materials
  • Statistical quality control
  • Production planning and control
  • Operations analysis and computer simulation
  • Human resources
  • Safety at work
  • Equipment engineering
  • Advanced concepts and strategies

About industrial engineer job

About industrial engineer job

What can we say about an industrial engineering job?

An industrial engineer’s job is to find the best combination of people, tools, materials, parts, information and power to provide products or services efficiently. In contrast to other engineering specialties such as civil engineering or mechanical engineering, industrial engineering track isn’t restricted to one industry or type of work. It may be industrial in the sense of working in a traditional manufacturing, mining or transportation environment. Or it can lead to work for a financial services firm, a government agency or a magazine publisher.

Industrial engineers research, analyze, model and test whole systems. They’re efficiency experts; safety engineers; ergonomics engineers; environmental health engineers; and in many cases, managers, principals or business owners. Al most any organization that you can name has a need for someone who understands what all the factors affecting its mission are, how they’re related, and what can be done to make it all work better. That’s what industrial engineering does – it makes a system, a process or an organization work better.

WHAT ARE SOME OF THE TOPICS THE INDUSTRIAL ENGINEER STUDIES? (Part V)

WHAT ARE SOME OF THE TOPICS THE INDUSTRIAL ENGINEER STUDIES? (Part V)

Material
The IE is concerned with the delivery and flow of material throughout the plant, often the plant has evolved as the company has.
Lot size
To allow the manufacturer to stay flexible the production lot sizes should be minimalized. This will only be economical after the reduction of machine set-ups have been achieved.
Inventory Levels
Since inventory is capital that cannot be converted until finished and purchased by a consumer, it should be kept to a minimal. Inventories not only tie up capital but if the customer requests a change then the inventory runs the risk of becoming obsolete.
Quality
The quality of the material can affect all parts of the system. Poor quality material often introduces excessive amounts of rework into each of the processes. A typical job for an IE would be to work with the quality department to set up a Quality Management system QMS.
Maintenance
The amount of maintenance that the machine is going to require is a variable that must be considered. Another issue about maintenance is whether or not the staff on hand will need to be retrained.

WHAT ARE SOME OF THE TOPICS THE INDUSTRIAL ENGINEER STUDIES? (Part IV)

WHAT ARE SOME OF THE TOPICS THE INDUSTRIAL ENGINEER STUDIES? (Part IV)
Set-Up Times
Set up time is the amount of time it takes to begin producing different parts on a machine. If set-up times remain large the company will operate with high levels of work in progress and finished goods tying up the companies valuable capital. Companies that fail to reduce their set-up times have a tendency to look sluggish in regards to their customers.
Cost
An IE will generally be responsible for coming up with a cost analysis on the equipment purchase. There are a several ways of coming up with this. Lifehow long the machine is expected to last when developing the cost analysis.
Efficiency
The traditional way of looking at efficiency was to keep the machine running at a 100%. The idea was the cost of the machine could be spread out over the amount of time it was kept running. The higher the machines efficiency, time running / time available, the better the accounting numbers looked in regards to machine cost.

WHAT ARE SOME OF THE TOPICS THE INDUSTRIAL ENGINEER STUDIES? (Part III)

WHAT ARE SOME OF THE TOPICS THE INDUSTRIAL ENGINEER STUDIES? (Part III)

Performing a time study

Without a standard the company will find it hard to estimate lead-time on their products. Times very greatly when the employee does not know what the expectation of company is. In order to correct this problem the IE will develop a fair standard expectation for each operation. It has been estimated that 12% of a company's total cost comes from direct labor. Another 43% of cost comes from the material cost. The other 45% is spent in overhead. So the idea that the largest productivity gains can be felt on the floor does not hold up in this light. Standards will be set for all parts of the company not just the operations performed by the direct laborers. The IE will be involved in analyzing and standardizing office work as well.
A good time study will take into account the unavoidable delays, fatigue, and to an extent, outside interferences. Time for wasteful steps, such as searching for tools, will not be included in the final standard. The expectation is that the workplace will be designed to accommodate the work and will be free from this type of waste.
By setting a performance standard the company can look at the schedule for the next year and determine if they have the proper amount of manpower. Prior to establishing standards the company would have to go on their gut feelings about the current capacity and need for additional help.

WHAT ARE SOME OF THE TOPICS THE INDUSTRIAL ENGINEER STUDIES? (Part II)

WHAT ARE SOME OF THE TOPICS THE INDUSTRIAL ENGINEER STUDIES? (Part II)

Performing a motion study

Every job can be broken down into its’ fundamental work elements. The Gilbreth family found that there are seventeen of these motions. The time to complete each motion does not change. This is the important part. Jobs can be studied visually or through the assistance of a camera for micro-motion studies.
Whether the study is visual or micro the IE will be applying the same rules of motion economy to the person, environment and tools. The rules that are applied to the person, intend to help the person move in a more balanced and synchronized manner. For example, both hands should begin and end moving at around the same time. Foot pedal devices should only be used when the operator can sit down.
The environment for the workers also needs to be set up to promote efficiency of work. Tools should be placed in fixed locations to eliminate the search and selection therbligs. Work surfaces and chairs should be adjusted to the correct working heights to eliminate stress. Whenever possible, gravity feeders should be used to deliver parts to the correct location. The worker's tools should be designed to eliminate multiple cuts. Adjustment handles should be designed to maximize the operator’s mechanical advantage.
The process above is a continuous process. To stay competitive companies must continue to increase the production capacity of their facilities while reducing their cost. The IE will be expected to come up with additional improvements each year.

WHAT ARE SOME OF THE TOPICS THE INDUSTRIAL ENGINEER STUDIES? (Part I)

WHAT ARE SOME OF THE TOPICS THE INDUSTRIAL ENGINEER STUDIES? (Part I)

People
This area is what sets industrial engineering apart from the other engineering disciplines. The IE undergoes several courses in psychology and social science to help them understand some of the work place dynamics involved in managing people. It also helps them develop effective methods of dealing with these problems.


Other areas of concern for the IE are how many people are required, is the job designed correctly for a human operator (Ergonomics), is the operation safe, what level of pay should be offered for the work, does the job require the employee to get more training, and is there good communication between management and their employers.

Manpower Requirements
To understand the manpower requirement a great deal of time study and motion study activity will need to occur. Depending on the company’s policies for setting work standards one of several methods will be chosen.

Adds

INDUSTRIAL ENGINEERING STUDY MATERIAL, LECTURES NOTES ON INDUSTRIAL ENGINEERING, INDUSTRIAL ENGINEERING LECTURES NOTES, INDUSTRIAL ENGINEERING CLASS NOTES, HOMEWORK, DOWNLOADS AND ALL ABOUT INDUSTRIAL ENGINEERING

Powered By Blogger

Popular articles

Topics

Accidents (8) Activities of industrial engineering (6) Batch of one (1) Continuos improvement (1) Costs of accidents (6) DEFINITIONS (17) Domain of industrial engineering (1) EDUCATION AND TRAINING (1) EVOLUTION OF INDUSTRIAL ENGINEERING (16) GETTING A JOB (2) Health and Safety at Work (10) Health and safety management (5) HISTORY OF INDUSTRIAL ENGINEERING (24) HS (1) HSE (6) HUMAN FACTORS AND INDUSTRIAL ENGINEERING (6) Industrial accidents (3) INDUSTRIAL AND SYSTEMS ENGINEERING (5) Industrial engineer job (9) INDUSTRIAL ENGINEERING (20) Industrial engineering functions (4) INDUSTRIAL ENGINEERS (2) Industrial revolution (1) Industrial Safety (9) Inputs (1) Investigation of incidents and accidents (4) Just in time (2) Kan-ban (2) Machine accidents (2) Manufacturing methodologies (2) Measure of productivity (3) Methods design (5) METHODS ENGINEERING (11) Motion and time study (4) Non machine accidents (3) Occupational health and safety (4) OPERATIONS RESEARCH (1) Outputs (1) Performance measurement (2) POSTGRADUATE CURRICULUM (1) Process analysis (5) Production engineering (2) Production systems (4) Productivity (6) Pull system (2) Push system (2) Quality control (1) Reporting (4) Solving problems (2) Statistical process control (1) TOPICS RELATED TO INDUSTRIAL ENGINEERING (11) Types of productivity (3) UNDERGRADUATE CURRICULUM (1) WHAT INDUSTRIAL ENGINEERS DO (7) WHERE INDUSTRIAL ENGINEERS WORK (6) Work simplification (9) Work study (2) Workplace design (2) Workplace desing (2)

Visiting from

Labels

Last Articles

Interesting blogs

Total Pageviews

Followers

free counters