Industrial Engineering

Class notes, readings and more

Definition of safety and industrial hygiene

Definition of safety and industrial hygiene
Safety at work
According to Bestratén (1999), safety at work is "the set of techniques and procedures that are designed to eliminate or reduce the risk of accidents."
Therefore, safety at work is concerned with addressing a number of hazards that affect industrial accidents, such as:
  • Electrical hazards;
  •  Lack of mechanisms of protection against moving parts of machinery, equipment and tools;
  •  Falls of heavy objects;
  • Poor conditions of order and cleanliness in the workplace;
  • Fire Hazards
To achieve safety at work, we should develop preventive actions that fall within both general and specific rules, such as:
  • The mission and vision of the company;
  • The safety policies;
  • Procedures at work;
  • Staff training;
  • Incorporation of safety devices on machines, equipment and facilities.
Industrial hygiene
According to Hernandez and Marti (1989), industrial hygiene is the discipline that aims the prevention of occupational diseases by controlling chemical, physical or biological agents in the working environment.
The (chemical, physical or biological) agents mentioned have effect in the workplace; not only directly for workers who perform a particular task, but also for people from other areas that are part of that environment. Moreover, the presence of these agents also affects the external environment of the company like nearby businesses, nearby communities and in general the soil, air and water.
In order to reduce occupational risks of emerging pollutants, three objectives are established:
  1. Controls on the origin and source of danger;
  2. Controls on the path between the hazard and the worker;
  3. Controls on the subject exposed to danger.

Productivity and industrial engineering

Productivity and industrial engineering
What is productivity?
Applied in an enterprise, a sector of economic activity or the economy as a whole, productivity may be defined as an output and input relation.
The term productivity can be used to asses or measure the extent to which a certain output can be extracted from a given input. This may appears simple enough in cases where both the output and the input are tangible and can be easily measured; however, in cases where intangibles are introduced measure of productivity can be more difficult.
Calculation of productivity
Productivity can be calculated as follows:
Productivity and industrial engineering in goods production
In the case of goods production, the objective is the manufacturing to a better cost, through the raw material, with productivity of the primary resources of production: Materials, human resources and machines. It's on these, where the action of industrial engineers should address their efforts. Increasing productivity indexes and reducing production costs, are fundamental tasks of an industrial engineer.

The domain of industrial and systems engineering

The domain of industrial and systems engineering
Definition of Industrial and Systems Engineering
According with Womack and Jones (1996), an Industrial and Systems Engineer is one who is concerned with the design, installation, and improvement of integrated systems of people, material, information, equipment, and energy by drawing upon specialized knowledge and skills in the mathematical, physical, and social sciences, together with the principles and methods of engineering analysis and design to specify, predict, and evaluate the results to be obtained from such systems’’.
The work of and industrial and systems engineering
But, what kind of system is it that Industrial and Systems Engineering work to optimize? In the context of organizations, we can say that the ultimate system of interest is the extended enterprise.
Industrial and system engineers must see how performance improvement in the target subsystem (warehouse layout, work cell configuration, display /human-equipment interface, queue design, simulation, supply chain, etc.) serves the higher good or works to optimize the performance of the larger system.
The domain of industrial and systems engineering
Basically, industrial and systems engineering works in four areas: manufacturing systems engineering, management systems, operations research and human factors engineering. Of course, each of these areas needs basic knowledge of mathematics, accounting, economics, statistics, psychology, etc.
A simple representation of the domain of industrial and systems engineering is shown below.
The Industrial and systems engineering value proposition isn’t only knowledge; it is the ability to reduce that knowledge to practice in such a way that it produces positive business results.



Popular articles

Visiting from

Last Articles

Interesting blogs

Total Pageviews