Industrial Engineering

Class notes, readings and more

Showing posts with label HISTORY OF INDUSTRIAL ENGINEERING. Show all posts
Showing posts with label HISTORY OF INDUSTRIAL ENGINEERING. Show all posts

The historical perspective of the industrial revolutions and the production systems

The historical perspective of the industrial revolutions and the production systems
Since the industrial revolution during the 19th and 20th century different production methods have dominated. On an overall level these methods can be grouped as craftsmanship, mass production and lean production, each with particular type of technology, work organization, production solutions, how to handle different product variants, and quality aspects.
Material and processes to develop products have a very long history, that is the case of casting, grinding, and forging which can be dated back 6000 years or more. The first attempts towards factory systems are described from ancient Rome. The Romans had what could be called factories to produce weapons, ceramic, glass ware, and some other products. It was not until the 19th century that real development towards the production systems of today started, when what we can call factory systems were developed. This development is frequently referred to as the industrial revolution.
Starting with the first industrial revolution in the 18th century, a big technical development occurred during the 19th and 20th century. The mechanization and automation in machines, equipment and tools increased tremendously. The prerequisites for mass production in the 20th century were covered with machines producing identical components and the utilization of capacity became an important factor to work with. The consequences from that were a need to develop new methods for planning of production, material supply and information.
The first industrial revolution
It took place during the period 1760-1830 with important changes that affect the development of systems to produce products. Inventions like the steam engine, the use of machine tools and the development within the textile industry were remarkable. This happened in parallel with the development of the fabrication system where factory workers were organized based on new principles for division of labor. This period also marks the transition from an economy based on agriculture to an economy based on industrial activities.
A significant discovery was the principle of division of labor that consist in the separation of tasks in any system so that participants may specialize. A great part of the changes carried our during the 19th and 20th century were based on this principle.
Gradually a need to coordinate, and also to control, the various operations emerged and entire production process became centralized and located in factory areas.
The second industrial revolution
The technical background to the development of the assembly system was the introduction of standardized and interchangeable parts. While England was leading the industrial revolution, the concept of interchangeable parts was introduced in the United States. In 1797 Eli Whitney (1765-1825) negotiated with the American government and received a contract for the production of 10,000 muskets. He believed he could produce parts accurately enough to permit parts assembly without fitting of each weapon. In this way the time required for production could be considerable reduced. After several years of development in his factory he traveled to Washington to demonstrate the principle of interchangeable parts.
The principle of interchangeable parts revolutionized the methods for manufacturing and constituted a prerequisite for mass production. Development of specialized production equipment made if possible to produce identical components for the assembly of complete muskets. Later on the manufacturing technique spread from the weapons industry to Singer, the company manufacturing sewing machines.
Ford’s production system from the early 20th century is often associated with the introduction of the assembly line in the manufacturing industry. The first movable assembly line in Ford’s factory was put into operation in 1913, but technology had been developed long before.

Evolution of industrial engineering (Part III)

Evolution of industrial engineering (Part III)

Gilbreth’s work continued in motions using motion pictures for studying tasks and workers. He developed micro motion study, a breakdown of work into fundamental elements called “therbligs” (baed on Gilbreth spelled backwards).

Taylor’s concept of work element was broad, and based on time study requirements like “get tool”. Whereas Gilbreth’s work was based on breaking down the elements further into basic individual therbligs, such as “reach for tool and pick up tool” instead of “get tool”.

There were many followers of Taylor and Gilbreth in the 1900s. They believed that Taylor’s work emphasized motion measurement whereas Gilbreth emphasized motion analysis. With time, it became clear that both approaches were necessary and were essentially interdependent. Ultimately what is important is the best of both of these efforts, namely, the right motions with the minimum of time. Thus evolved a term “Methods engineering” which is an important function of industrial engineering.

The concepts of time and motion studies developed by Taylor and Gilbreth are still the basis for industrial engineering. Even today, over fifty percent of industrial engineering activities are related to this concept.

Evolution of industrial engineering (Part II)

Evolution of industrial engineering (Part II)

Frank Gilbreth, started working on motion studies soon after Taylor began his work. Gilbreth was a construction contractor, who noticed that the industry lacked standardization of methods. Gilbreth and his wife Lilian, devoted their lives to motion studies.

Gilbreth’s famous discovery took place when he was doing apprenticeship as a bricklayer; he observed that there were no two men, who could lay bricks the same way. Consequently, their quality and quantity of output varied. He improved the method of laying bricks by making a number of changes. He provided a platform whose height could be adjusted, so that bricklayer is always at the same height in relationship to the bricks laid. A shelf for bricks and mortar was built to save workers from bending down to pick up their material. He had bricks pre-stacked with the best side facing in the direction of the workers to avoid workers from having to turn the brick several times to find its best side just before laying.

These changes significantly reduced the number of motions in laying bricks, and resulted in higher production with lower fatigue for the workers. Lilian Gilbreth, Frank’s wife, joined him in his pursuit for promoting scientific management by conducting research and application work in studies of motion and methods.

Evolution of industrial engineering (Part I)

Evolution of industrial engineering (Part I)

In any productive environment, whether it is an industrial plant, an institution such as a hospital, restaurant, office, etc. there is a need to improve the quality of work. This means that a given task should be carried out efficiently and accurately in terms of time and effort spent.

During the industrial revolution of the 18th and 19th century, many small ownership based businesses grew into larger enterprises in which a number of manual tasks were performed by mechanical and steam operated machines. At that time there weren’t adequate tools or working conditions and there was considerable exploitation of labor. As a result, there were wide variations in output from different workers and different factories making the same product.

Frederick Taylor, a mechanical engineer was who observed that better methods could be established even for a simple task as handling iron ore and coal for a blast in a steel plant. He pursued the task of establishing a norm for the weight and size of the shovel for scooping and transferring material. He observed and proved that instead of using the largest shovel to move the maximum material in a day, it was better to design a shovel which could be comfortably used by the workers on a repetitive basis without tiring or injuring them at the end of the day. When his plan was implemented, he reduced the manpower by over 25%. Taylor was also considered to be the father of scientific management because he was a pioneer in improving methods and establishing the incentive system for workers with the benefit of higher productivity to the owners and higher wages for the workers.

The Hawthorne Experiment and the developing of Industrial Engineering

The Hawthorne Experiment and the developing of Industrial Engineering

A major episode in the quest to understand behavioral aspects was the series of studies conducted at the Western Electric Hawthorne plant in Chicago between 1924 and 1932. These studies originally began with a simple question: How does workplace illumination affect worker productivity? Under sponsorship from the National Academy of Science, a team of researchers from the Massachusetts Institute of Technology (MIT) observed groups of coil-winding operators under different lighting levels. They observed that productivity relative to a control group went up as illumination increased, as had been expected. Then, in another experiment, they observed that productivity also increased when illumination decreased, even to the level of moonlight. Unable to explain the results, the original team abandoned the illumination studies and began other tests on the effect of rest periods, length of work week, incentive plans, free lunches, and supervisory styles on productivity. In most cases the trend was for higher than normal output by the groups under study.

Approaching the problem from the perspective of the “psychology of the total situation,” experts brought in to study the problem came to the conclusion that the results were primarily due to “a remarkable change in the mental attitude in the group.” Interpretations of the study were eventually reduced to the simple explanation that productivity increased as a result of the attention received by the workers under study. This was dubbed the Hawthorne effect. However, in subsequent writings this simple explanation was modified to include the argument that work is a group activity and that workers strive for a sense of belonging—not simple financial gain—in their jobs. By emphasizing the need for listening and counseling by managers to improve worker collaboration, the industrial psychology movement shifted the emphasis of management from technical efficiency—the focus of Taylorism—to a richer, more complex, human-relations orientation.

You can see more in “Industrial Engineering Handbook”

Methods Engineering and Work Simplification in Industrial Engineering

Methods Engineering and Work Simplification in Industrial Engineering

These reactions led to an increased interest in the work of the Gilbreths. Their efforts in methods analysis, which had previously been considered rather theoretical and impractical, became the foundation for the resurgence of industrial engineering in the 1920s and 1930s. In 1927, H. B. Maynard, G. J. Stegmerten, and S. M. Lowry wrote Time and Motion Study, emphasizing the importance of motion study and good methods. This eventually led to the term methods engineering as the descriptor of a technique emphasizing the “elimination of every unnecessary operation” prior to the determination of a time standard. In 1932, A. H. Mogenson published Common Sense Applied to Time and Motion Study, in which he stressed the concepts of motion study through an approach he chose to call work simplification. His thesis was simply that the people who know any job best are the workers doing that job. Therefore, if the workers are trained in the steps necessary to analyze and challenge the work they are doing, then they are also the ones most likely to implement improvements. His approach was to train key people in manufacturing plants at his Lake Placid Work Simplification Conferences so that they could in turn conduct similar training in their own plants for managers and workers. This concept of taking motion study training directly to the workers through the work simplification programs was a tremendous boon to the war production effort during World War II.

The first Ph.D. granted in the United States in the field of industrial engineering was also the result of research done in the area of motion study. It was awarded to Ralph M. Barnes by Cornell University in 1933 and was supervised by Dexter Kimball. Barnes’s thesis was rewritten and published as Motion and Time Study: the first full-length book devoted to this subject. The book also attempted to bridge the growing chasm between advocates of time study versus motion study by emphasizing the inseparability of these concepts as a basic principle of industrial engineering.

Another result of the reaction was a closer look at the behavioral aspects associated with the workplace and the human element. Even though the approach taken by Taylor and his followers failed to appreciate the psychological issues associated with worker motivation, their work served to catalyze the behavioral approach to management by systematically raising questions on authority, motivation, and training. The earliest writers in the field of industrial psychology acknowledged their debt to scientific management and framed their discussions in terms consistent with this system.

Industrial Engineering and the post–world war I era

Industrial Engineering and the post–world war I era

By the end of World War I, scientific management had firmly taken hold. Large-scale, vertically integrated organizations making use of mass production techniques were the norm. Application of these principles resulted in spectacular increases in production. Unfortunately, however, because increases in production were easy to achieve, management interest was focused primarily on the implementation of standards and incentive plans, and little attention was paid to the importance of good methods in production. The reaction of workers and the public to unscrupulous management practices such as “rate cutting” and other speedup tactics, combined with concerns about dehumanizing aspects of the application of scientific management, eventually led to legislation limiting the use of time standards in government operations.

OTHER PIONEERS OF INDUSTRIAL ENGINEERING (Part two)

OTHER PIONEERS OF INDUSTRIAL ENGINEERING (Part two)

Gantt’s ideas covered a wider range than some of his predecessors. He was interested not only in standards and costs but also in the proper selection and training of workers and in the development of incentive plans to reward them. Although Gantt was considered by Taylor to be a true disciple, his disagreements with Taylor on several points led to the development of a “task work with bonus” system instead of Taylor’s “differential piece rate” system and explicit procedures for enabling workers to either protest or revise standards. He was also interested in scheduling problems and is best remembered for devising the Gantt chart: a systematic graphical procedure for planning and scheduling activities that is still widely used in project management.

In attendance were also the profession’s first educators including Hugo Diemer, who started the first continuing curriculum in industrial engineering at Pennsylvania State College in 1908; William Kent, who organized an industrial engineering curriculum at Syracuse University in the same year; Dexter Kimball, who presented an academic course in works administration at Cornell University in 1904; and C. Bertrand Thompson, an instructor in industrial organization at Harvard, where the teaching of Taylor’s concepts had been implemented. Consultants and industrial managers at the meeting included Carl Barth, Taylor’s mathematician and developer of special purpose slide rules for metal cutting; John Aldrich of the New England Butt Company, who presented the first public statement and films about micro- motion study; James Dodge, president of the Link-Belt Company; and Henry Kendall, who spoke of experiments in organizing personnel functions as part of scientific management in industry. Two editors present were Charles Going of the Engineering Magazine and Robert Kent, editor of the first magazine with the title of Industrial Engineering. Lillian Gilbreth was perhaps the only pioneer absent since at that time women were not admitted to ASME meetings.

Another early pioneer was Harrington Emerson. Emerson became a champion of efficiency independent of Taylor and summarized his approach in his book, the Twelve Principles of Efficiency. These principles, which somewhat paralleled Taylor’s teachings, were derived primarily through his work in the railroad industry. Emerson, who had reorganized the work shops of the Santa Fe Railroad, testified during the hearings of the Interstate Commerce Commission concerning a proposed railroad rate hike in 1910 to 1911 that scientific management could save “a million dollars a day.” Because he was the only “efficiency engineer” with firsthand experience in the railroad industry, his statement carried enormous weight and served to emblazon scientific management on the national consciousness. Later in his career he became particularly interested in selection and training of employees and is also credited with originating the term dispatching in reference to shop floor control, a phrase that undoubtedly derives from his railroad experience.

OTHER PIONEERS OF INDUSTRIAL ENGINEERING (Part one)

OTHER PIONEERS OF INDUSTRIAL ENGINEERING (Part one)

In 1912, the originators and early pioneers, the first educators and consultants, and the managers and representatives of the first industries to adopt the concepts developed by Taylor and Gilbreth gathered at the annual meeting of the American Society of Mechanical Engineers (ASME) in New York City. The all-day session on Friday, December 6, 1912, began with a presentation titled “The Present State of the Art of Industrial Management.” This report and the subsequent discussions provide insight and understanding about the origin and relative contributions of the individuals involved in the birth of a unique new profession: industrial engineering.

In addition to Taylor and Gilbreth, other pioneers present at this meeting included Henry Towne and Henry Gantt. Towne, who was associated with the Yale and Towne Manufacturing Company, used ASME as the professional society to which he presented his views on the need for a professional group with interest in the problems of manufacturing and management. This suggestion ultimately led to the creation of the Management Division of ASME, one of the groups active today in promoting and disseminating information about the art and science of management, including many of the topics and ideas industrial engineers are engaged in. Towne was also concerned with the economic aspects and responsibilities of the engineer’s job including the development of wage payment plans and the remuneration of workers. His work and that of Frederick Halsey, father of the Halsey premium plan of wage payment, advanced the notion that some of the gains realized from productivity increases should be shared with the workers creating them.

PIONEERS OF INDUSTRIAL ENGINEERING - FRANK AND LILLIAN GILBRETH

PIONEERS OF INDUSTRIAL ENGINEERING - FRANK AND LILLIAN GILBRETH

The other cornerstone of the early days of industrial engineering was provided by the husband and wife team of Frank and Lillian Gilbreth. Consumed by a similar passion for efficiency, Frank Gilbreth’s application of the scientific method to the laying of bricks produced results that were as revolutionary as those of Taylor’s shoveling experiment. He and Lillian extended the concepts of scientific management to the identification, analysis, and measurement of fundamental motions involved in performing work. By applying the motion-picture camera to the task of analyzing motions they were able to categorize the elements of human motions into 18 basic elements or therbligs. This development marked a distinct step forward in the analysis of human work, for the first time permitting analysts to design jobs with knowledge of the time required to perform the job. In many respects these developments also marked the beginning of the much broader field of human factors or ergonomics.

While their work together stimulated much research and activity in the field of motion study, it was Lillian who also provided significant insight and contributions to the human issues associated with their studies. Lillian’s book, The Psychology of Management (based on her doctoral thesis in psychology at Brown University), advanced the premise that because of its emphasis on scientific selection and training, scientific management offered ample opportunity for individual development, while traditional management stifled such development by concentrating power in a central figure. Known as the “first lady of engineering,” she was the first woman to be elected to the National Academy of Engineering and is generally credited with bringing to the industrial engineering profession a concern for human welfare and human relations that was not present in the work of many pioneers of the scientific management movement.

PIONEERS OF INDUSTRIAL ENGINEERING - TAYLOR AND SCIENTIFIC MANAGEMENT (Part two)

PIONEERS OF INDUSTRIAL ENGINEERING - TAYLOR AND SCIENTIFIC MANAGEMENT (Part two)

Taylor’s interest in what today we classify as the area of work measurement was also motivated by the information that studies of this nature could supply for planning activities. In this sense, his work laid the foundation for a broader “science of planning”: a science totally empirical in nature but one that he was able to demonstrate could significantly improve productivity. To Taylor, scientific management was a philosophy based not only on the scientific study of work but also on the scientific selection, education, and development of workers.

His classic experiments in shoveling coal, which he initiated at the Bethlehem Steel Corporation in 1898, not only resulted in development of standards and methods for carrying out this task, but also led to the creation of tool and storage rooms as service departments, the development of inventory and ordering systems, the creation of personnel departments for worker selection, the creation of training departments to instruct workers in the standard methods, recognition of the importance of the layout of manufacturing facilities to ensure minimum movement of people and materials, the creation of departments for organizing and planning production, and the development of incentive payment systems to reward those workers able to exceed standard outputs. Any doubt about Taylor’s impact on the birth and development of industrial engineering should be erased by simply correlating the previously described functions with many of the fields of work and topics that continue to play a major role in the practice of the profession and its educational content at the university level.

PIONEERS OF INDUSTRIAL ENGINEERING - TAYLOR AND SCIENTIFIC MANAGEMENT (Part one)

PIONEERS OF INDUSTRIAL ENGINEERING - TAYLOR AND SCIENTIFIC MANAGEMENT (Part one)

While Frederick W. Taylor did not use the term industrial engineering in his work, his writings and talks are generally credited as being the beginning of the discipline. One cannot presume to be well versed in the origins of industrial engineering without reading Taylor’s books: Shop Management and The Principles of Scientific Management. An engineer to the core, he earned a degree in mechanical engineering from Stevens Institute of Technology and developed several inventions for which he received patents. While his engineering accomplishments would have been sufficient to guarantee him a place in history, it was his contributions to management that resulted in a set of principles and concepts considered by Drucker to be “possibly the most powerful as well as lasting contribution America has made to Western thought since the Federalist Papers.”

The core of Taylor’s system consisted of breaking down the production process into its component parts and improving the efficiency of each. Paying little attention to rules of thumb and standard practices, he honed manual tasks to maximum efficiency by examining each component separately and eliminating all false, slow, and useless movements. Mechanical work was accelerated through the use of jigs, fixtures, and other devices many invented by Taylor himself. In essence, Taylor was trying to do for work units what Whitney had done for material units: standardize them and make them interchangeable.

Improvement of work efficiency under the Taylor system was based on the analysis and improvement of work methods, reduction of the time required to carry out the work, and the development of work standards. With an abiding faith in the scientific method, Taylor’s contribution to the development of “time study” was his way of seeking the same level of predictability and precision for manual tasks that he had achieved with his formulas for metal cutting.

HISTORY OF INDUSTRIAL ENGINEERING - INTERCHANGEABILITY OF PARTS

HISTORY OF INDUSTRIAL ENGINEERING - INTERCHANGEABILITY OF PARTS

Another key development in the history of industrial engineering was the concept of inter- changeable parts. The feasibility of the concept as a sound industrial practice was proven through the efforts of Eli Whitney and Simeon North in the manufacture of muskets and pistols for the U.S. government. Prior to the innovation of interchangeable parts, the making of a product was carried out in its entirety by an artisan, who fabricated and fitted each required piece. Under Whitney’s system, the individual parts were mass-produced to tolerances tight enough to enable their use in any finished product. The division of labor called for by Adam Smith could now be carried out to an extent never before achievable, with individual workers producing single parts rather than completed products. The result was a significant reduction in the need for specialized skills on the part of the workers a result that eventually led to the industrial environment, which became the object of study of Frederick W. Taylor.

HISTORY OF INDUSTRIAL ENGINEERING - SPECIALIZATION OF LABOR

HISTORY OF INDUSTRIAL ENGINEERING - SPECIALIZATION OF LABOR

The concepts presented by Adam Smith in his treatise The Wealth of Nations also lie at the foundation of what eventually became the theory and practice of industrial engineering. His writings on concepts such as the division of labor and the “invisible hand” of capitalism served to motivate many of the technological innovators of the Industrial Revolution to establish and implement factory systems. Examples of these developments include Arkwright’s implementation of management control systems to regulate production and the output of factory workers, and the well-organized factory that Watt, together with an associate, Matthew Boulton, built to produce steam engines. The efforts of Watt and Boulton and their sons led to the planning and establishment of the first integrated machine manufacturing facility in the world, including the implementation of concepts such as a cost control system designed to decrease waste and improve productivity and the institution of skills training for craftsmen. Many features of life in the twentieth century including widespread employment in large- scale factories, mass production of inexpensive goods, the rise of big business, and the existence of a professional manager class are a direct consequence of the contributions of Smith and Watt.

Another early contributor to concepts that eventually became associated with industrial engineering was Charles Babbage. The findings that he made as a result of visits to factories in England and the United States in the early 1800s were documented in his book entitled On the Economy of Machinery and Manufacturers. The book includes subjects such as the time required for learning a particular task, the effects of subdividing tasks into smaller and less detailed elements, the time and cost savings associated with changing from one task to another, and the advantages to be gained by repetitive tasks. In his classic example on the manufacture of straight pins, Babbage extends the work of Adam Smith on the division of labor by showing that money could be saved by assigning lesser-paid workers (in those days women and children) to lesser-skilled operations and restricting the higher-skilled, higher- paid workers to only those operations requiring higher skill levels. Babbage also discusses notions related to wage payments, issues related to present-day profit sharing plans, and even ideas associated with the organization of labor and labor relations. It is important to note, however, that even though much of Babbage’s work represented a departure from conventional wisdom in the early nineteenth century, he restricted his work to that of observing and did not try to improve the methods of making the product, to reduce the times required, or to set standards of what the times should be.

HISTORY OF INDUSTRIAL ENGINEERING - THE INDUSTRIAL REVOLUTION

HISTORY OF INDUSTRIAL ENGINEERING - THE INDUSTRIAL REVOLUTION

Even though historians of science and technology continue to argue about when industrial engineering began, there is a general consensus that the empirical roots of the profession date back to the Industrial Revolution, which began in England during the mideighteenth century. The events of this era dramatically changed manufacturing practices and served as the gene- sis for many concepts that influenced the scientific birth of the field a century later. The driving forces behind these developments were the technological innovations that helped mechanize many traditional manual operations in the textile industry. These include the flying shuttle developed by John Kay in 1733, the spinning jenny invented by James Hargreaves in 1765, and the water frame developed by Richard Arkwright in 1769. Perhaps the most important innovation, however, was the steam engine developed by James Watt in 1765. By making steam practical as a power source for a host of applications, Watt’s invention freed manufacturers from their reliance on waterpower, opening up far greater freedom of location and industrial organization. It also provided cheaper power, which led to lower production costs, lower prices, and greatly expanded markets. By facilitating the substitution of capital for labor, these innovations generated economies of scale that made mass production in centralized locations attractive for the first time. The concept of a production system, which lies at the core of modern industrial engineering practice and research, had its genesis in the factories created as a result of these innovations.

EARLY ORIGINS OF INDUSTRIAL ENGINEERING

EARLY ORIGINS OF INDUSTRIAL ENGINEERING

Before entering into the history of the profession, it is important to note that the birth and evolution of industrial engineering are analogous to those of its engineering predecessors. Even though there are centuries old examples of early engineering practice and accomplishments, such as the Pyramids, the Great Wall of China, and the Roman construction projects, it was not until the eighteenth century that the first engineering schools appeared in France. The need for greater efficiency in the design and analysis of bridges, roads, and buildings resulted in principles of early engineering concerned primarily with these topics being taught first in military academies (military engineering). The application of these principles to non-military or civilian endeavors led to the term civil engineering. Interrelated advancements in the fields of physics and mathematics laid the groundwork for the development and application of mechanical principles. The need for improvements in the design and analysis of materials and devices such as pumps and engines resulted in the emergence of mechanical engineering as a distinct field in the early nineteenth century. Similar circumstances, albeit for different technologies, can be ascribed to the emergence and development of electrical engineering and chemical engineering. As has been the case with all these fields, industrial engineering developed initially from empirical evidence and understanding and then from research to develop a more scientific base.

INDUSTRIAL ENGINEERING- TIES TO THE INDUSTRIAL REVOLUTION (Part two)

INDUSTRIAL ENGINEERING- TIES TO THE INDUSTRIAL REVOLUTION (Part two)

It is widely recognized that the occupational discipline that has contributed the most to the development of modern society is engineering, through its various segments of focus. Engineers design and build the infrastructure that sustains the society. This includes roads, residential and commercial buildings, bridges, canals, tunnels, communication systems, healthcare facilities, schools, habitats, transportation systems, and factories. The Industrial Engineering process of systems integration facilitates the success of these infrastructures. In this sense, the scope of Industrial and Systems Engineering spans all the levels of activity, task, job, project, program, process, system, enterprise, and society.

It is essential to recognize the alliance between industry and Industrial Engineering as the core basis for the profession. The profession has branched off on too many different tangents over the years. Hence, it has witnessed the emergence of Industrial Engineering professionals who claim sole allegiance to some narrow line of practice, focus, or specialization rather than the core profession itself. Industry is the original basis of Industrial Engineering and it should be preserved as the core focus. This should be supported by the different areas of specialization. While it is essential that we extend the scope of Industrial Engineering to other domains, it should be realized that over-divergence of practice will not sustain the profession. A fragmented profession cannot survive for long. The incorporation of systems can help to bind everything together.

INDUSTRIAL ENGINEERING - TIES TO THE INDUSTRIAL REVOLUTION (Part one)

INDUSTRIAL ENGINEERING - TIES TO THE INDUSTRIAL REVOLUTION (Part one)

Industrial engineering has a proud heritage with a link that can be traced back to the Industrial Revolution. Although the practice of Industrial Engineering has been in existence for centuries, the work of Frederick Taylor in the early 20th century was the first emergence of the profession. It has been referred to with different names and connotations. Scientific management was one of the original names used to describe what industrial engineers do.

Industry, the root of the profession’s name, clearly explains what the profession is about. The dictionary defines industry generally as the ability to produce and deliver goods and services. The industry in Industrial Engineering can be viewed as the application of skills and cleverness to achieve work objectives. This relates to how human effort is harnessed innovatively to carry out work. Thus, any activity can be defined as industry if it generates a product, be it service or physical product. A systems view of Industrial Engineering encompasses all the details and aspects necessary for applying skills and accuracy to produce work efficiently. Hence the academic curriculum of Industrial Engineering must change, evolve, and adapt to the changing systems environment of the profession.

INDUSTRIAL ENGINEERING HISTORY

INDUSTRIAL ENGINEERING HISTORY

Industrial engineering courses had been taught by multiple universities in the late 1800s along Europe, especially in very developed countries such as Germany, France and United Kingdom, but also in Spain in the Technical University of Madrid. In the United States,the first department of industrial engineering was established in 1908 at the Pennsylvania State University by Alex Kaserman.

The first doctoral degree in industrial engineering was awarded in the 1930s by Cornell University.

THE HISTORY OF INDUSTRIAL ENGINEERING (Part V)

THE HISTORY OF INDUSTRIAL ENGINEERING (Part V)

During the 1960s, and after, Universities began to adopt operation research techniques and add them to the curriculum for the Industrial Engineering Degree. Now for the first time the methods of industrial engineering could rest on an analytical foundation, instead of the old method of empiricism. New developments in mathematics for optimization as well as new methods of advanced statistical analysis helped to fill in the holes once left by the purely theoretical approach. However, problems where extremely large and complex to and until the digital computer was developed processing this kind of information was almost impossible.
With Digital Computer and mass storage capabilities the industrial engineer had a brand new tool for calculating massive problems quickly. Prior to the computer computations on a system would take weeks or months if possible at all, but with the computer and the development of sub-routines, calculations could be done in minutes and easily repeated with new problem criteria. With the storage capabilities of the modern digital computer, results from previous systems could be saved and compared with new information. This data gave industrial engineers a powerful way of studying production systems and their reaction to change.

Adds

INDUSTRIAL ENGINEERING STUDY MATERIAL, LECTURES NOTES ON INDUSTRIAL ENGINEERING, INDUSTRIAL ENGINEERING LECTURES NOTES, INDUSTRIAL ENGINEERING CLASS NOTES, HOMEWORK, DOWNLOADS AND ALL ABOUT INDUSTRIAL ENGINEERING

Powered By Blogger

Popular articles

Topics

Accidents (8) Activities of industrial engineering (6) Batch of one (1) Continuos improvement (1) Costs of accidents (6) DEFINITIONS (17) Domain of industrial engineering (1) EDUCATION AND TRAINING (1) EVOLUTION OF INDUSTRIAL ENGINEERING (16) GETTING A JOB (2) Health and Safety at Work (10) Health and safety management (5) HISTORY OF INDUSTRIAL ENGINEERING (24) HS (1) HSE (6) HUMAN FACTORS AND INDUSTRIAL ENGINEERING (6) Industrial accidents (3) INDUSTRIAL AND SYSTEMS ENGINEERING (5) Industrial engineer job (9) INDUSTRIAL ENGINEERING (20) Industrial engineering functions (4) INDUSTRIAL ENGINEERS (2) Industrial revolution (1) Industrial Safety (9) Inputs (1) Investigation of incidents and accidents (4) Just in time (2) Kan-ban (2) Machine accidents (2) Manufacturing methodologies (2) Measure of productivity (3) Methods design (5) METHODS ENGINEERING (11) Motion and time study (4) Non machine accidents (3) Occupational health and safety (4) OPERATIONS RESEARCH (1) Outputs (1) Performance measurement (2) POSTGRADUATE CURRICULUM (1) Process analysis (5) Production engineering (2) Production systems (4) Productivity (6) Pull system (2) Push system (2) Quality control (1) Reporting (4) Solving problems (2) Statistical process control (1) TOPICS RELATED TO INDUSTRIAL ENGINEERING (11) Types of productivity (3) UNDERGRADUATE CURRICULUM (1) WHAT INDUSTRIAL ENGINEERS DO (7) WHERE INDUSTRIAL ENGINEERS WORK (6) Work simplification (9) Work study (2) Workplace design (2) Workplace desing (2)

Visiting from

Labels

Last Articles

Interesting blogs

Total Pageviews

Followers

free counters