Industrial Engineering

Class notes, readings and more

Showing posts with label Industrial engineering functions. Show all posts
Showing posts with label Industrial engineering functions. Show all posts

Productivity and industrial engineering



Productivity and industrial engineering
What is productivity?
Applied in an enterprise, a sector of economic activity or the economy as a whole, productivity may be defined as an output and input relation.
The term productivity can be used to asses or measure the extent to which a certain output can be extracted from a given input. This may appears simple enough in cases where both the output and the input are tangible and can be easily measured; however, in cases where intangibles are introduced measure of productivity can be more difficult.
Calculation of productivity
Productivity can be calculated as follows:
Productivity and industrial engineering in goods production
In the case of goods production, the objective is the manufacturing to a better cost, through the raw material, with productivity of the primary resources of production: Materials, human resources and machines. It's on these, where the action of industrial engineers should address their efforts. Increasing productivity indexes and reducing production costs, are fundamental tasks of an industrial engineer.

The domain of industrial and systems engineering

The domain of industrial and systems engineering
Definition of Industrial and Systems Engineering
According with Womack and Jones (1996), an Industrial and Systems Engineer is one who is concerned with the design, installation, and improvement of integrated systems of people, material, information, equipment, and energy by drawing upon specialized knowledge and skills in the mathematical, physical, and social sciences, together with the principles and methods of engineering analysis and design to specify, predict, and evaluate the results to be obtained from such systems’’.
The work of and industrial and systems engineering
But, what kind of system is it that Industrial and Systems Engineering work to optimize? In the context of organizations, we can say that the ultimate system of interest is the extended enterprise.
Industrial and system engineers must see how performance improvement in the target subsystem (warehouse layout, work cell configuration, display /human-equipment interface, queue design, simulation, supply chain, etc.) serves the higher good or works to optimize the performance of the larger system.
The domain of industrial and systems engineering
Basically, industrial and systems engineering works in four areas: manufacturing systems engineering, management systems, operations research and human factors engineering. Of course, each of these areas needs basic knowledge of mathematics, accounting, economics, statistics, psychology, etc.
A simple representation of the domain of industrial and systems engineering is shown below.
The Industrial and systems engineering value proposition isn’t only knowledge; it is the ability to reduce that knowledge to practice in such a way that it produces positive business results.

Activities of industrial engineering

Activities of industrial engineering

Most important activities of industrial engineering are:

  • Development of time standards, costing and performance standards.
  • Selection of processes and assembling methods.
  • Selection and design of tools and equipment.
  • Design of facilities including plant location, layout of building, machines and equipment, material handling system raw materials and finished goods storage facilities.
  • Design and improvement of planning and control systems for production, inventory, quality and plant maintenance and distribution systems.
  • Cost control systems.
  • Development and installation of job evaluation systems.
  • Installation of wage incentive schemes.
  • Design and installation of value engineering and analysis system.
  • Operation research.
  • Mathematical and statistical analysis.
  • Performance evaluation.
  • Organization and methods.
  • Supplier selection and evaluation.

Industrial engineering functions

Industrial engineering functions

Industrial engineering plays an important role in any organization. Organizations are usually set up with selected industrial engineering functions best suited to their requirements. For example a company manufacturing standardized products may not have operation research functions whereas a manufacturer of precision instruments may heavily rely on quality control functions.

Traditionally, industrial engineering involves different functions, which support manufacturing and service operations in order to improve productivity, safety and workers welfare. These functions, as in the past, are otherwise neglected by many entrepreneurs who are only motivated by profit. Developed countries have long ago realized the physiological needs of their citizens as their life style has improved with the abundance of material resources. Further, with an increase in educated workers, the demand for improved working conditions and better treatment from the owners of enterprises increased. The owners adopted many of the industrial engineering functions to satisfy the employees demand while still maintaining profitability.

Industrial engineering functions can be grouped in different ways to suit an organization’s need. The major groupings, which provide a profile of its involvement, are:

  • Methods engineering
  • Work measurement
  • Planning of facilities and handling of materials
  • Statistical quality control
  • Production planning and control
  • Operations analysis and computer simulation
  • Human resources
  • Safety at work
  • Equipment engineering
  • Advanced concepts and strategies

Adds

INDUSTRIAL ENGINEERING STUDY MATERIAL, LECTURES NOTES ON INDUSTRIAL ENGINEERING, INDUSTRIAL ENGINEERING LECTURES NOTES, INDUSTRIAL ENGINEERING CLASS NOTES, HOMEWORK, DOWNLOADS AND ALL ABOUT INDUSTRIAL ENGINEERING

Powered By Blogger

Popular articles

Topics

Accidents (8) Activities of industrial engineering (6) Batch of one (1) Continuos improvement (1) Costs of accidents (6) DEFINITIONS (17) Domain of industrial engineering (1) EDUCATION AND TRAINING (1) EVOLUTION OF INDUSTRIAL ENGINEERING (16) GETTING A JOB (2) Health and Safety at Work (10) Health and safety management (5) HISTORY OF INDUSTRIAL ENGINEERING (24) HS (1) HSE (6) HUMAN FACTORS AND INDUSTRIAL ENGINEERING (6) Industrial accidents (3) INDUSTRIAL AND SYSTEMS ENGINEERING (5) Industrial engineer job (9) INDUSTRIAL ENGINEERING (20) Industrial engineering functions (4) INDUSTRIAL ENGINEERS (2) Industrial revolution (1) Industrial Safety (9) Inputs (1) Investigation of incidents and accidents (4) Just in time (2) Kan-ban (2) Machine accidents (2) Manufacturing methodologies (2) Measure of productivity (3) Methods design (5) METHODS ENGINEERING (11) Motion and time study (4) Non machine accidents (3) Occupational health and safety (4) OPERATIONS RESEARCH (1) Outputs (1) Performance measurement (2) POSTGRADUATE CURRICULUM (1) Process analysis (5) Production engineering (2) Production systems (4) Productivity (6) Pull system (2) Push system (2) Quality control (1) Reporting (4) Solving problems (2) Statistical process control (1) TOPICS RELATED TO INDUSTRIAL ENGINEERING (11) Types of productivity (3) UNDERGRADUATE CURRICULUM (1) WHAT INDUSTRIAL ENGINEERS DO (7) WHERE INDUSTRIAL ENGINEERS WORK (6) Work simplification (9) Work study (2) Workplace design (2) Workplace desing (2)

Visiting from

Labels

Last Articles

Interesting blogs

Total Pageviews

Followers

free counters