Industrial Engineering

Class notes, readings and more

An introduction to the process of designing work methods – The characteristics of a problem

An introduction to the process of designing work methods – The characteristics of a problem

What are the characteristics of a problem?

Being familiar with the characteristics of a problem is one of the foundations for its solution, since it facilitates the understanding and scope of the design and the procedure that it implies, since the design is, in essence, the solution to a problem that by tradition is entrusted to the engineers.

Solving an engineering problem, including of course related to methods engineering, involves dealing with several different methods to achieve the desired result. If there were no known or unknown alternative solutions, there would be no problem.

If all solutions were equally satisfactory, then there would not be a problem either, however this is usually not the case, since a problem involves finding a preferred method; for example, the least expensive. Therefore, if the preferred method is obvious from the beginning, there is also no problem.

In any problem there is a set of initial circumstances (input, or starting point) and a set of final circumstances (output, goal, or result for which a method is sought). The characteristics of a problem are listed below:

  • The number of possible solutions is, in general, large.
  • Possible solutions to a practical problem are seldom obvious at first. In reality, it is not often that all possible solutions are known in advance, even if prior analysis or research has been done.
  • Alternative solutions are not equally desirable, therefore the preferred solution is sought, for which it is necessary to apply selection or decision processes. In this way, the existence of methods with different degrees of preference enables a fruitful search before making a choice. The base of the preferences is usually called the criterion and in various problems in the business world, this parameter is the profit obtained; This allows choosing the best alternative among various investment alternatives. Therefore, the method sought is the one that maximizes the profit when time, money and other resources are invested.
  • The relative advantage of alternative solutions to a problem is generally not evident, and the search for data, measurements and calculations must be carried out to determine it satisfactorily. 

The cost of time and other resources dedicated to solving a problem must be considered in a reasonable way, since, as with many economic concepts, a point is reached where it is more difficult to find additional solutions and where productivity begins to decline. descend. Thus, while the search for better methods continues, a point in time is reached where better solutions are unlikely to be found that justify a greater investment of time, money, and other resources.

Can a problem be solved perfectly?

There are two reasons why a problem cannot be solved perfectly: i) the time required for such a task would be greater than the life of the problem, which is true for the vast majority of problems in the industry and ii) it is not economically optimal to try to find a perfect solution. It is more economical to direct efforts to other problems that require solutions, before continuing to try to find a perfect solution.

In solving problems, it is not intended to find one that is completely ideal, nor is it expected to find it, since there would be no possibility of recognizing it as such if it were found. The idea that is pursued is to progress towards the ideal solution, looking for better solutions until it is determined that it is not productive to continue with the search.


0 comentarios:

Post a Comment

Adds

INDUSTRIAL ENGINEERING STUDY MATERIAL, LECTURES NOTES ON INDUSTRIAL ENGINEERING, INDUSTRIAL ENGINEERING LECTURES NOTES, INDUSTRIAL ENGINEERING CLASS NOTES, HOMEWORK, DOWNLOADS AND ALL ABOUT INDUSTRIAL ENGINEERING

Powered By Blogger

Popular articles

Topics

Accidents (8) Activities of industrial engineering (6) Batch of one (1) Continuos improvement (1) Costs of accidents (6) DEFINITIONS (17) Domain of industrial engineering (1) EDUCATION AND TRAINING (1) EVOLUTION OF INDUSTRIAL ENGINEERING (16) GETTING A JOB (2) Health and Safety at Work (10) Health and safety management (5) HISTORY OF INDUSTRIAL ENGINEERING (24) HS (1) HSE (6) HUMAN FACTORS AND INDUSTRIAL ENGINEERING (6) Industrial accidents (3) INDUSTRIAL AND SYSTEMS ENGINEERING (5) Industrial engineer job (9) INDUSTRIAL ENGINEERING (20) Industrial engineering functions (4) INDUSTRIAL ENGINEERS (2) Industrial revolution (1) Industrial Safety (9) Inputs (1) Investigation of incidents and accidents (4) Just in time (2) Kan-ban (2) Machine accidents (2) Manufacturing methodologies (2) Measure of productivity (3) Methods design (5) METHODS ENGINEERING (11) Motion and time study (4) Non machine accidents (3) Occupational health and safety (4) OPERATIONS RESEARCH (1) Outputs (1) Performance measurement (2) POSTGRADUATE CURRICULUM (1) Process analysis (5) Production engineering (2) Production systems (4) Productivity (6) Pull system (2) Push system (2) Quality control (1) Reporting (4) Solving problems (2) Statistical process control (1) TOPICS RELATED TO INDUSTRIAL ENGINEERING (11) Types of productivity (3) UNDERGRADUATE CURRICULUM (1) WHAT INDUSTRIAL ENGINEERS DO (7) WHERE INDUSTRIAL ENGINEERS WORK (6) Work simplification (9) Work study (2) Workplace design (2) Workplace desing (2)

Visiting from

Labels

Last Articles

Interesting blogs

Total Pageviews

Followers

free counters